Pembuatan Pilar Support Mesin 3D Concrete Printing menggunakan Konstruksi Cremona dengan Material Besi Profil Siku
Main Article Content
Abstract
The main constraint in porang processing are porang chips thickness uniformity and high calcium oxalate content. There are three stages of porang processing are washing, slicing, and boiling. The machine designed in this research combining the function of three machines : washing machine, slicer, and boiler. First, porang roots is placed into the hopper, then porang is cleaned using rotating washing brush with the translational movement of the screw conveyor. After that, porang is sliced and boiled in NaCl solution to reduce its calcium oxalate content.
This research uses VDI 2222 design methodology including planning, conceptualizing, designing, and finishing. The design and validation process of critical components is carried out using CAE (Computer Aided Engineering) software. After going through the design process, a machine design was produced with a production capacity of 500 kg/hour.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Artikel yang diajukan untuk dipublikasikan pada JTRM (Jurnal Teknologi dan Rekayasa Manufaktur) ini adalah karya dari penulis dan/atau tim penulis yang memiliki pembahasan pada bidang sains dan teknologi. Naskah tersebut belum pernah dipublikasikan di Jurnal (media) apapun atau tidak sedang diajukan untuk dipublikasikan pada jurnal atau prosiding lain. Apabila terdapat duplikasi penerbitan, artikel akan dicabut/dihapus oleh Dewan Redaksi.
Nama dan alamat email yang dimasukkan pada laman JTRM (Jurnal Teknologi dan Rekayasa Manufaktur) hanya akan digunakan sebatas kepentingan penerbitan artikel pada laman JTRM (https://jtrm.polman-bandung.ac.id/) dan tidak akan diberikan kepada pihak lain untuk kepentingan apapun.
References
[2] Lim, S., Buswell, R. A., Le, T. T., Austin, S. A., Gibb, A. G., & Thorpe, T. (2012). Developments in construction-scale additive manufacturing processes. Automation in Construction, 21, 262–268. doi: https://doi.org/10.1016/j.autcon.2011.06.010
[3] Hong, S., Park, S., Shin, M., Lee, H. J., & Yoon, H. (2022). Review of 3D printing technology for construction and its cost and time analysis. Journal of Building Engineering, 45, 103530. doi: https://doi.org/10.1016/j.jobe.2021.103530
[4] Kim, S., Lim, J. H., & Han, S. H. (2021). Cost-effectiveness of 3D concrete printing in structural framework. Automation in Construction, 129, 103784. doi: https://doi.org/10.1016/j.autcon.2021.103784
[5] Jerri Jaenuri Miftah, "Perencanaan Pembuatan Pilar Sumbu Y Dengan Konstruksi Kremona pada Mesin 3D Printing Bangunan Sipil," Politeknik Manufaktur Bandung, Bandung, Karya Tulis Ilmiah 2022.
[6] Lowke, D., & Kloft, H. (2020). Injection 3D Concrete Printing (I3DCP): Basic Principles and Case Studies. Materials, 13(5), 1093. doi: https://doi.org/10.3390/ma13051093
[7] Wolfs, R. J. M., Bos, F. P., & Salet, T. A. M. (2019). Hardened properties of 3D printed concrete: The influence of process parameters on interlayer adhesion. Cement and Concrete Research, 119, 132-140. doi: https://doi.org/10.1016/j.cemconres.2019.02.017
[8] Bos, F., Wolfs, R., Ahmed, Z., & Salet, T. (2018). Additive manufacturing of concrete in construction: Potentials and challenges of 3D concrete printing. Virtual and Physical Prototyping, 13(3), 209-225. doi: https://doi.org/10.1080/17452759.2018.1476064